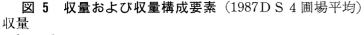
熱帯におけるインド型水稲におよぼす LP肥料の効果(その2)

㈱日本工営(前・国際稲研究所) 禾1 田 源 七

ASおよびLP区の収量および収量構成要素の一部を表3および図5に示す。いずれの品種も作期および栽植密度に関係なく,同一施肥量ならLP区の収量はほとんどの場合AS区のそれを凌駕し,いずれの場合も2AS区のそれに近い値を示す。AS区とLP区の収量差は栽植密度の高くなるほど大きい。両肥料区の収量差と品種の早晩生との間では早生種にやや高い傾向がみられた。登熟歩合はほとんどの場合差がないことより,LP区の収量の増加は穂の容量(Sink size:収量÷登熟歩合で表現できる)の増加による。LP区の


Sink size は窒素吸収量の差を反映して、同一施肥量の場合にはつねにAS区を上まわり、2AS区のそれにほぼ等しい値を示す。

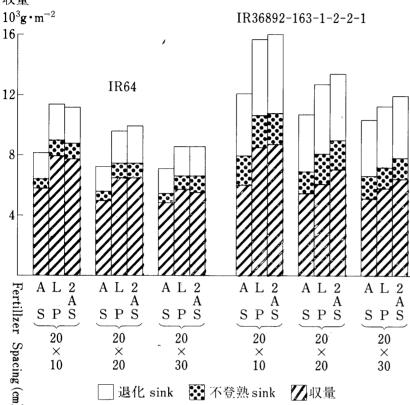

Sink size がほぼ決定される頴花分化終期における稲体窒素量と分化 Sink size (PS) および Sink size との関係を図6に示す。頴花分化終期の窒素量とPSおよび Sink size との間に強い正の相関がみられ、窒素の Sink size 生産効率におよぼす肥料の影響はほとんど認められない。したがって、Sink の生成に対しては頴花分化終期までの窒素吸収総量の影響が大きく、そこに至

表 3-1 LP100 が収量および収量構成要素におよぼす影響(1987DS)

品 種	栽 植 密 度 (cm)	肥料	穂 数 (m ⁻²)	1 穂 頴花数	m³あたり 頴花数 (×10³)	Sink Size (g·m ⁻²)	退化 Sink Size (g·m ⁻²)	登 歩 合 (%)	精 籾 千粒重 (g)	収 量 (g·m ⁻²)
		AS	443	64	28.4	685	213	81	24.4	555
	20×10	LP100	538	77	41.4	1,006	287	80	24.3	800
		2AS	556	78	43.4	1,042	310	81	24.0	841
		AS	332	70	23.2	565	204	88	24.3	495
IR64	20×20	LP100	414	78	32.3	785	259	87	24.3	685
		2AS	412	77	31.7	774	248	87	24.4	670
		AS	310	77	23.8	585	188	83	24.5	487
	20×30	LP100	346	83	28.7	704	252	86	24.5	606
		2AS	358	79	28.3	690	227	87	24.4	597
		AS	480	79	37.9	959	576	79	25.3	760
	20×10	LP100	567	88	49.9	1,277	751	82	25.6	1,024
		2AS	575	82	47.1	1,202	724	84	25.5	1,006
TD00000 100		AS	354	89	31.5	807	473	84	25.6	680
IR36892-163-	20×20	LP100	375	97	36.3	931	567	83	25.6	770
1-2-2-1		2AS	393	98	38.5	994	566	81	25.8	807
		AS	307	98	30.1	776	462	79	25.8	614
	20×30	LP100	330	96	31.7	821	492	79	25.9	646
		2AS	344	93	32.0	816	498	84	25.5	677

AS:硫安 2AS:硫安倍量

るまでの窒素吸収過程の Sink 生成 に与える影響は無視できる。

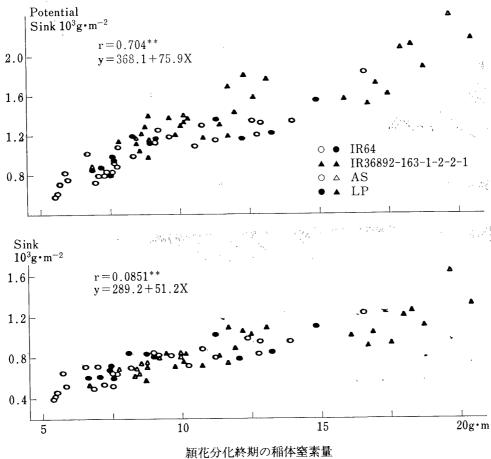

Sink size は同一品種の場合は1 穂頴花数と穂数との積で近似的に表 わしうる。穂数はLP区がAS区よ り多く, 2AS区のそれにほぼ等し い。1穂頴花数はLP区がAS区に 比し高い場合とほとんど差のみられ ない場合がある。LP区で1穂頴花 数の多い場合は穂数の増加の少い場 合である。しかし, どのような条件 の時にLP区に1穂頴花数が多くな るかは現在のところ明らかではな い。いずれにしろ, LP区のAS区 に対する1穂頴花数の増加率は穂数 のそれに比して小さく, LP区の Sink の 増大は最高分げつ期以後の 窒素吸収量の増大が無効茎を減少さ せたことによって生じた穂数の増大 に負うところが大きい。

表 3-2 L P 100が収量および収量構成要素におよぼす影響 (1987WS)

品 種	栽 植 密 度 (cm)	肥料	穂 数 (m ⁻²)	1 穂 頴花数	m³あたり 頴花数 (×10³)	Sink Size (g·m ⁻²)	退化 Sink Size (g·m ⁻²)	登 集 合 (%)	精 籾 千粒重 (g)	収 量 (g·m ⁻²)
IR66	20×10	AS LP100 2AS	389 493 487	86 86 89	33.5 43.3 43.8	659 836 880	377 488 598	78 76 77	19.7 19.3 20.1	516 637 679
	20×20	AS LP100 2AS	301 358 351	95 96 99	28.6 34.3 34.7	560 689 701	317 433 551	81 76 78	19.6 20.1 20.2	451 526 544
	20×30	AS LP100 2AS	267 303 298	104 99 103	27.8 30.0 30.7	550 597 620	292 393 471	78 78 79	19.8 19.9 20.2	427 467 488
IR36892-163- 1-2-2-1	20×10	AS LP100 2AS	366 400 392	77 83 80	28.2 33.0 31.4	711 836 804	408 461 531	82 77 82	25.2 25.3 25.6	586 642 658
	20×20	AS LP100 2AS	297 318 341	85 87 86	25.2 27.7 29.3	650 709 756	364 371 492	81 83 81	25.8 25.6 25.8	524 585 610
	20×30	AS LP100 2AS	252 275 269	86 91 96	21.7 26.1 25.8	547 676 676	310 390 377	83 79 82	25.2 25.9 26.2	453 532 553

AS:硫安 2AS:硫安倍量

図 6 頴花分化終期の稲体窒素量と Potentialsink および Sink sige との関係

また、Sink size はPSと退化 Sink size (DS) の差によって決定される。LP区はAS区に比

し、PSもDSも大きい。しかし、退化 Sink 率は両区間にほとんど差がない。一般に幼穂形成期

表 4-1 溶出度の異なるLPの収量および収量構成要素におよぼす影響(1986WS)

品 種	肥料	穂 数 (m ⁻²)	1 穂 頴花数	m³あたり 穎花数 (×10³)	Sink Size (g·m ⁻²)	退化 Sink Size (g·m ⁻²)	登 势 合 (%)	精 籾 千粒重 (g)	収量 (g·m ⁻²)
	AS	288	78	22.4	545	121	86	24.3	467
	LP70	330	81	25.9	638	146	81	24.6	520
IR64	LP100	328	89	29.2	723	166	84	24.8	605
	LP100+AS	320	78	25.7	609	147	88	24.3	535
	LP140	340	84	28.5	695	100	85	24.4	588
	LP140+AS	318	74	23.5	571	145	84	24.3	480
	AS	276	88	24.3	572	300	71	23.5	405
	LP70	338	83	27.9	659	324	71	23.6	466
IR36892-163- 1-2-2-1	LP100 LP100+AS	335 365	84 73	28.0 26.7	652 629	375 376	71 70	23.3 23.6	466 442
	LP140 LP140+AS	340 348	81 74	28.2 25.9	653 608	374 338	70 72	23.1 23.5	453 439

より出穂期までの窒素吸収量の多い場合にはDS が少なくなる。LP区でDSの多いのはPSが多 いためである。またLP区はAS区に比し有効茎 歩合が高く,無効茎が少ないことより頴花の茎と 共に退化した量は非常に少ない。これを考慮に入 れれば退化 Sink 率はAS区に高く, LPの Sink 退化防止の効果は認められるが、逆にLP区の単 位窒素あたりのPS生産効率はAS区に比して低 いとみられる。

そこで, LPの初期の窒素吸収の低さを補うた め, その一部を硫安に置きかえて初期生育を確保 し収量を高めようと試みた。しかし、結果は予想 に反して初期生育促進による収量増 は 認 め られ ず、LP単独区より減収した(表4-1)。このこと

は前述のように窒素吸収経過よりは窒素吸収の絶 対量が収量に対する影響の大きいことを示してい る。

窒素溶出速度の異るLPの下で栽培された水稲 の収量および収量構成要素の一部を表 4-2,3 に示 した。同一作期で同一品種では登熟歩合に差がな いので収量は Sink size の大きさによって決る。 LP40, LP70およびLP100区の収量および Sink size は肥料区間にほとんど差はなく、いず れも対照区のそれに比して高かった。しかし,こ れらの肥料より窒素溶出速度の遅いLPでは品種 の生育期間の長短により収量に与える 影響 が異 る。短期種 I R58では L P140および L P180区の Sink size および収量は窒素溶出速度の速いLP

表 4-2 N溶出度の異なるLPの収量および収量構成要素におよぼす影響 (1988DS)

品 種	栽 植密 度	肥料	穂 数 (m ⁻²)	1 穂 頴花数	m³あたり 頴花数 (×10³)	Sink Size (g·m ⁻²)	登 势 合 (%)	精 籾 千粒重 (g)	収 (g•1	量 n ⁻²)
		AS	505	63	32.0	688	93	21.5	641	e~g
	20×10	LP40	620	64	39.6	835	92	21.1	772	a∼d
	20 ^ 10	LP70	635	58	37.9	804	92	21.2	736	b~f
IR58		LP140	520	63	32.9	685	93	20.8	639	fg
1136		AS	522	63	32.7	677	93	20.7	631	fg
	20×20	LP40	608	62	37.9	767	92	20.2	705	c∼f
	20 × 20	LP70	628	65	36.5	737	91	20.2	671	d∼g
		LP140	488	61	29.7	623	91	21.0	569	g
	20×10	AS	505.	70	35.3	742	94	21.0	695	c~f
		LP40	575	73	41.7	872	94	20.9	817	ab
		LP70	560	76	42.4	870	89	20.5	780	abc
IR66		LP140	625	73	45.8	954	90	20.8	859	a
1100	20×20	AS	462	75	34.5	710	93	20.6	659	d∼g
		LP40	538	69	37.0	744	92	20.1	688	c∼g
		LP70	540	76	40.8	809	91	19.8	7.35	b~f
		LP140	555 ⁻	78	43.5	870	93	20.0	805	abc
		AS	410	85	35.0	873	79	25.0	693	c~f
	20×10	LP40	450	91	41.0	1,073	74	26.2	797	abc
	20 × 10	LP70	435	95	41.3	1,063	75	25.8	798	abc
IR36892-163- 1-2-2-1		LP140	4 85	88	42.6	1,121	70	26.4	781	a~d
		AS	392	79	31.0	796	81	25.7	645	d∼f
	00 × 00	LP40	430	93	39.9	997	80	25.0	794	abc
	20×20	LP70	412	93	38.3	972	79	25.3	763	abc
		LP140	430	90.	42.3	1,074	76	25.6	816	ab

AS:硫安 末尾のアルファベットは収量の有意性を示し、異符号間には5%レベルで有意差があり、 同符号間には有意差はない。

区に比して低い。また、IR66ではLP180の粗 植区の収量がその他に比して低いが、中生種IR 36892-163-1-2-2-1 ではすべての LP区間で収量 に差を認められない。このように品種の移植より 幼穂形成期までの生育期間の長さの差によって, 各品種の収量の窒素溶出速度に対する反応が異な る。生育期間の短い品種ほど窒素溶出速度に対す る反応が大きい。そして、窒素溶出速度に対して 品種ごとに critical point があり、その critical point より窒素溶出速度が速ければ収量および収 量構成要素に差は認め難い。したがって、LPを

基肥として使用する場合には品種の生育期間の長 短によって、そのタイプは選択する必要がある が, その場合注意すべき点は唯一つ窒素溶出速度 が使用品種に対して遅いものを避けることであ り、critical point より N溶出速度の速いものを選 択すれば窒素溶出速度の差の収量に与える影響は 無視できる。日本では熱帯におけるほど生育期間 の品種間差がないので, LP選択の問題は少ない ものと思われる。また、特記すべきことはLP肥 料にとって, どのタイプでも密植ほど収量増に結 びつき易いことである(文献省略)。

表 4-3 N溶出度の異なるLPの収量および収量構成要素に取ぼす影響 (1989 D S)

品 種	栽 植密 度、	肥料	穂 数 (m ⁻²)	1 穂 頴花数	mあたり 頴花数 (×10³)	Sink Size (g·m ⁻²)	登 歩 合 (%)	精 籾 千粒重 (g)	4又 (g•r	<u>量</u> n ⁻²)
IR58	10×.5	U LP100 LP180	746 790 708	61 71 66	45.3 55.8 46.7	909 1,171 906	78 72 73	20.1 21.0 20.0	705 838 689	ab a abc
	20×10	U LP100 LP180	449 482 415	65 69 65	29.3 33.0 26.9	586 693 562	76 76 73	20.0 21.0 20.9	446 524 409	e~h c~f e~h
	20×30	U LP100 LP180	255 327 222	69 80 70	20.5 24.5 18.2	421 459 351	61 71 63	20.5 18.8 19.3	255 327 222	hi ghi i
	10×5	U LP100 LP180	560 554 584	80 94 98	44.7 52.2 57.3	925 1,046 1,117	77 ⁻ 74 75	20.7 20.0 19.5	717 776 840	ab a a
IR66	20×10	U LP100 LP180	381 397 385	78 98 101	29.7 39.1 38.9	583 754 770	79 79 75	19.3 19.8 19.4	460 592 576	d~g bcd b~e
	20×30	U LP100 LP180	267 286 251	102 138 116	27.3 39.4 29.0	529 766 560	70 65 68	19.4 19.4 19.3	365 499 381	f~i d~g f~i
	10×5	U LP100 LP180	532 612 550	79 82 96	42.8 50.0 52.9	1,105 1,284 1,388	44 43 41	26.2 25.7 26.3	483 546 574	d~g b~f b~e
IR36892-163- 1-2-2-1	20×10	U LP100 LP180	355 393 403	81 95 84	28.6 37.2 33.9	723 947 871	44 43 •43	25.3 25.5 25.7	321 405 372	hi e~h f~i
	20×30	U LP100 LP180	241 273 264	77 92 96	23.4 25.0 25.4	589 632 645	45 55 43	25.2 25.3 25.4	265 345 276	hi ghi hi

U: 尿素 末尾のアルファベットは収量の有意性を示し、異符号間には5%レベルで有意差があり、 同一符号間には有意差はない。